header - publications

Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance

by Plowe CV, Cortese JF, Djimde A, Nwanyanwu OC, Watkins WM, Winstanley PA, Estrada-Franco JG, Mollinedo RE, Avila JC, Cespedes JL, Carter D, Doumbo OK

Published in 1997

To assess the relationship between mutations in Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) and clinical pyrimethamine-sulfadoxine resistance, polymerase chain reaction surveys and analyses for new mutations were conducted in four countries with increasing levels of pyrimethamine-sulfadoxine resistance: Mali, Kenya, Malawi, and Bolivia. Prevalence of mutations at DHFR codon 1 8 and a new mutation at DHPS 54 correlated with increased pyrimethamine-sulfadoxine resistance (P < . 5). Mutations at DHFR 51, DHFR 59, and DHPS 437 correlated with resistance without achieving statistical significance. Mutations at DHFR 164 and DHPS 581 were common in Bolivia, where pyrimethamine-sulfadoxine resistance is widespread, but absent in African sites. Two new DHFR mutations, a point mutation at codon 5 and an insert at codon 3 , were found only in Bolivia. DHFR and DHPS mutations occur in a progressive, stepwise fashion. Identification of specific sets of mutations causing in vivo drug failure may lead to the development of molecular surveillance methods for pyrimethamine-sulfadoxine resistance.

Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins

by Wang P, Lee CS, Bayoumi R, Djimde A, Doumbo O, Swedberg G, Dao LD, Mshinda H, Tanner M, Watkins WM, Sims P, Hyde JE

Published in 1997

Resistance of Plasmodium falciparum to antifolate chemotherapy is a significant problem where combinations such as Fansidar (pyrimethamine-sulfadoxine; PYR-SDX) are used in the treatment of chloroquine-resistant malaria. Antifolate resistance has been associated with variant sequences of dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS), the targets of PYR and SDX respectively. However, while the nature and distribution of mutations in the dhfr gene are well established, this is not yet the case for dhps. We have thus examined by DNA sequence analysis 141 field samples from several geographical regions with differing Fansidar usage (West and East Africa, the Middle East and Viet Nam) to establish a database of the frequency and repertoire of dhps mutations, which were found in 6 % of the samples. We have also simultaneously determined from all samples their dhfr sequences, to better understand the relationship of both types of mutation to Fansidar resistance. Whilst the distribution of mutations was quite different across the regions surveyed, it broadly mirrored our understanding of relative Fansidar usage. In samples taken from individual patients before and after drug treatment, we found an association between the more highly mutated forms of dhps and/or dhfr and parasites that were not cleared by antifolate therapy. We also report a novel mutation in a Pakistani sample at position 16 of DHFR (A16S) that is combined with the familiar C59R mutation, but is wild-type at position 1 8. This is the first observation in a field sample of a mutant dhfr allele where the 1 8 codon is unchanged.

Molecular basis of in vivo resistance to sulfadoxine-pyrimethamine in African adult patients infected with Plasmodium falciparum malaria parasites

by Basco LK, Tahar R, Ringwald P

Published in 1998

In vitro sulfadoxine and pyrimethamine resistance has been associated with point mutations in the dihydropteroate synthase and dihydrofolate reductase domains, respectively, but the in vivo relevance of these point mutations has not been well established. To analyze the correlation between genotype and phenotype, 1 Cameroonian adult patients were treated with sulfadoxine-pyrimethamine and followed up for 28 days. After losses to follow-up (n = 1) or elimination of DNA samples due to mixed parasite populations with pyrimethamine-sensitive and pyrimethamine-resistant profiles (n = 3), parasite genomic DNA from day blood samples of six patients were analyzed by DNA sequencing. Three patients who were cured had isolates characterized by a wild-type or mutant dihydrofolate reductase gene (with one or two mutations) and wild-type dihydropteroate synthase gene. Three other patients who failed to respond to sulfadoxine-pyrimethamine treatment carried isolates with triple dihydrofolate reductase gene mutations and either a wild-type or a mutant dihydropteroate synthase gene. Three dihydrofolate reductase gene codons (51, 59, and 1 8) may be reliable genetic markers that can accurately predict the clinical outcome of sulfadoxine-pyrimethamine treatment in Africa.

Molecular epidemiology of malaria in Yaounde, Cameroon II. Baseline frequency of point mutations in the dihydropteroate synthase gene of Plasmodium falciparum

by Basco LK, Ringwald P

Published in 1998

Sulfadoxine-pyrimethamine is one of the alternative antimalarial drugs used to treat chloroquine-resistant Plasmodium falciparum malaria. The molecular target of sulfadoxine, an analog of p-aminobenzoic acid that inhibits the folate biosynthetic pathway, is dihydropteroate synthase (DHPS). The nucleotide sequence of the DHPS gene was determined in 32 clinical isolates obtained in Yaounde, Cameroon, and compared with the sequence of reference clones and Cambodian strains of P. falciparum. Of the 32 Cameroonian isolates, 31 displayed one of the sulfadoxine-sensitive mutation patterns: Ala-436/Ala-437/Ala-581/Ala-613 (n = 2 ), Ser-436/Gly-437/Ala-581/Ala-613 (n = 6), Ser-436/Ala-437/Ala-581/Ala-613 (n = 4), and Ala-436/Gly-437/Ala-581/Ala-613 (n = 1). One isolate had a sulfadoxine-resistant profile characterized by a double mutation: Phe-436/Ala-437/Ala-581/Ser-613. Although the majority of the isolates had a sulfadoxine-sensitive genetic profile, further studies are needed to correlate the mutation patterns and in vitro and in vivo sulfadoxine sensitivity.

Polymorphisms in the dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) genes of Plasmodium falciparum and in vivo resistance to sulphadoxine/pyrimethamine in isolates from Tanzania

by Jelinek T, Ronn AM, Lemnge MM, Curtis J, Mhina J, Duraisingh MT, Bygbjerg IC, Warhurst DC

Published in 1998

The efficacy of sulphadoxine/pyrimethamine (S/P) in treatment of uncomplicated falciparum malaria in Africa is increasingly compromised by development of resistance. The occurrence of mutations associated with the active site sequence in the Plasmodium falciparum genes coding for dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) is associated with in vitro resistance to pyrimethamine and sulphadoxine. This study investigates the occurrence of these mutations in infected blood samples taken from Tanzanian children before treatment with S/P and their relationship to parasite breakthrough by day 7. The results show that alleles of DHPS (436-alanine, 437-alanine and 54 -lysine) were significantly reduced in prevalence on day 7 after S/P treatment. In this area, a DHPS with 436-serine, 437-glycine and 54 -glutamate appears to play a major role in resistance to S/P in vivo. Evidence for the influence of mutations in the DHFR gene in this investigation is not clear, probably because of the high prevalence of 'resistance-related' mutations at day in the local parasite population. For apparently the same reason, it was not possible to show a statistical association between S/P resistance and the presence of particular polymorphisms in the DHFR and DHPS genes before treatment.

In vivo selection for a specific genotype of dihydropteroate synthetase of Plasmodium falciparum by pyrimethamine-sulfadoxine but not chlorproguanil-dapsone treatment

by Curtis J, Duraisingh MT, Warhurst DC

Published in 1998

Plasmodium falciparum present in blood samples collected before and 3 weeks after treatment with either pyrimethamine-sulfadoxine or chlorproguanil-dapsone was analyzed for variants of the genes coding for the target enzymes of antifolate drugs, dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS). Fragments of the genes were amplified by polymerase chain reactions, and variants were identified by specific restriction endonuclease digestion. Treatment with either drug combination selected for the variants Ile51, Arg59, and Asn1 8 of DHFR, which have been associated with in vitro resistance to pyrimethamine and cycloguanil. The genotype Ser436, Gly437, and Glu54 of DHPS was selected by pyrimethamine-sulfadoxine but not chlorproguanil-dapsone treatment, showing that a combination of these three variants is important for in vivo resistance to sulfadoxine in the area studied.

Pyrimethamine-sulfadoxine efficacy and selection for mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase in Mali

by Diourte Y, Djimde A, Doumbo OK, Sagara I, Coulibaly Y, Dicko A, Diallo M, Diakite M, Cortese JF, Plowe CV

Published in 1999

To assess pyrimethamine-sulfadoxine (PS) efficacy in Mali, and the role of mutations in Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) in in vivo PS resistance, 19 patients with uncomplicated P. falciparum malaria were treated with PS and monitored for 56 days. Mutation-specific polymerase chain reactions and digestion with restriction endonucleases were used to detect DHFR and DHPS mutations on filter paper blood samples from pretreatment and post-treatment infections. Only one case each of RI and RII level resistance and no cases of RIII resistance or therapeutic failure were observed. Post-PS treatment infections had significantly higher rates of DHFR mutations at codons 1 8 and 59. No significant selection for DHPS mutations was seen. Pyrimethamine-sulfadoxine is highly efficacious in Mali, and while the low level of resistance precludes assessing the utility of molecular assays for in vivo PS resistance, rapid selection of DHFR mutations supports their role in PS failure.

Low-dose treatment with sulfadoxine-pyrimethamine combinations selects for drug-resistant Plasmodium falciparum strains

by Kun JF, Lehman LG, Lell B, Schmidt-Ott R, Kremsner PG

Published in 1999

A total of 252 children were enrolled in a drug trial to assess the effect of minimal doses of sulfadoxine (Sdx) and pyrimethamine (Pyr). Parasite samples isolated from these patients were analyzed before and after treatment to investigate the level of drug-resistant strains. The parasite genes encoding dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) were assayed for point mutations that are associated with resistance against drugs. Before treatment, Pyr(r) genotypes of the DHFR gene were found in 42% of all samples, 8% of the patients harbored a mixed parasite population and 5 % had a sensitive DHFR genotype. In terms of the DHPS gene, we found mutations in 45% of the parasites. Twenty-four percent had a Ser(436) mutation, and 26% had a Gly(437) mutation. Recrudescent parasites were highly enriched for both Pyr(r) and Sdx(r) strains after treatment (P < . 1 and P = . 29, respectively).

Plasmodium falciparum resistance to sulfadoxine/pyrimethamine in Uganda: correlation with polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes

by Jelinek T, Kilian AH, Kabagambe G, von Sonnenburg F

Published in 1999

The efficacy of sulfadoxine/pyrimethamine (S/P) in treatment of uncomplicated falciparum malaria in Africa is increasingly compromised by development of resistance. The occurrence of active site mutations in the Plasmodium falciparum gene sequences coding for dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) is known to confer resistance to pyrimethamine and sulfadoxine. This study investigated the occurrence of these mutations in infected blood samples taken from Ugandan children before treatment with S/P and their relationship to parasite breakthrough by day 7. The results confirm the occurrence of mutations in DHFR and DHPS that were significantly selected under S/P pressure at day 7: a combination of alleles 51-isoleucine and 1 8-asparagine in DHFR, and 436-serine, 437-alanine, 54 -lysine and 581-alanine in DHPS, appears to play a major role in the development of in vivo resistance in P. falciparum strains against S/P. Therefore, earlier results derived from isolates from hyperendemic areas in Tanzania were confirmed by this investigation.

Population structure of recrudescent Plasmodium falciparum isolates from western Uganda

by Jelinek T, Kilian AH, Westermeier A, Proll S, Kabagambe G, Nothdurft HD, von Sonnenburg F, Loscher T

Published in 1999

It has been proposed that polymorphisms of the Merozoite Surface Protein 1 and 2 (MSP1 and MSP2) and the Glutamate Rich Protein (GLURP) genes can be considered as genetic markers for the genotyping of field populations of Plasmodium falciparum. During a field study on in vivo drug resistance against chloroquine, sulphadoxine/pyrimethamine (S/P) and cotrimoxazole in West Uganda, sensitive and resistant isolates were collected from patients by fingerprick for genotyping. 59 (72.8%) of the 81 P. falciparum samples isolated at day showed multiclonal infection with 2-7 clones. Among the isolates we investigated, presence of the allelic family MAD2 of MSP1 at day was significantly (P = . 41) associated with decreased resistance to antimalarials. Use of this method in a field study on in vivo drug resistance demonstrates another potential application of genotyping as a tool for epidemiological investigations.

Show next 10 »